Data


Accuracy results from testing KNN, Random Forest, and SVC models on each wine type using all sampling methods.


Index Models Accuracies Type of Wine Sampling Type
0 KNN 0.797959 White Three Categories
1 KNN 0.859375 Red Three Categories
2 KNN 0.813077 Red + White Three Categories
3 Random Forest 0.858163 White Three Categories
4 Random Forest 0.921875 Red Three Categories
5 Random Forest 0.848462 Red + White Three Categories
6 SVC 0.804082 White Three Categories
7 SVC 0.884375 Red Three Categories
8 SVC 0.793077 Red + White Three Categories
9 KNN 0.526316 White Random Sample Three Categories
10 KNN 0.657895 Red Random Sample Three Categories
11 KNN 0.394737 Red + White Random Sample Three Categories
12 Random Forest 0.552632 White Random Sample Three Categories
13 Random Forest 0.657895 Red Random Sample Three Categories
14 Random Forest 0.552632 Red + White Random Sample Three Categories
15 SVC 0.631579 White Random Sample Three Categories
16 SVC 0.657895 Red Random Sample Three Categories
17 SVC 0.605263 Red + White Random Sample Three Categories
18 KNN 0.767347 White Two Categories
19 KNN 0.690625 Red Two Categories
20 KNN 0.775385 Red + White Two Categories
21 Random Forest 0.839796 White Two Categories
22 Random Forest 0.800000 Red Two Categories
23 Random Forest 0.845385 Red + White Two Categories
24 SVC 0.792857 White Two Categories
25 SVC 0.725000 Red Two Categories
26 SVC 0.778462 Red + White Two Categories